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This Supplementary Material document provides additional details and
experimental results as mentioned in the main paper. In Section 1, we provide
further implementation details of our proposed method, including additional
training objectives, sampling strategy, and more training strategy and parame-
ter setting details. Section 2 explains details of the implementation of baseline
methods and evaluation metrics. In Section 3, we provide additional qualita-
tive results and comparisons (Section 3.1 and Section 3.2). We also demonstrate
the robust performance of our method with 4 views (Section 3.3). Section 3.5
shows the results of additional ablation studies for the alternating optimization.
Further experiments for the avatar training and rendering are presented in Sec-
tion 3.6 and Section 3.7. Finally, we discuss our limitations and possible future
works in Section 4.

In addition, please see the Supplementary Video, which better illustrates
our method and results for the task of estimating 3D poses of closely interacting
people.

1 Implementation

1.1 Technical Details

Avatar Training Objectives During the multi-avatar prior learning, we follow [7]
to add the hard surface regularization term :

Lhard = − 1

| R |
∑
r∈R

log(e|α(r)| + e|α(r)−1|) + const, (1)

where α(r) is the ray opacity calculated from α(r) =
∑N

i=1 αiΠj<i(1−αj), αi =
1 − exp(−σiδi). r ∈ R where R is the set of sampled rays. σi is the density of
the sampled point xi and δi is the distance between samples along the ray r.
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We also enforce a density regularization similar to the one proposed by [7].

Ldensity = − 1

| W |
∑

wi∈W
log(e−wi + ewi−1)

wi = αiΠj<i(1− αj) W = {wi}
(2)

Here, wi is the weight of density for each sampled point xi along the rays, and
W is the set of all weights wi for all samples xi along all rays r ∈ R.

Fig. 1: Layered Rendering. For a ray r marching through the 3D bounding box of
human instances, we uniformly sample points along the ray for each instance. If the
sampling regions of different instances intersect with each other, we sort the sampled
points by the depth values and compute the color of the ray following the sorted order
of points via numerical integration [10].

Layered Volume Rendering Fig. 1 illustrates the detailed sampling, sorting, and
rendering process for a ray in layered rendering. We first sample points in the
bounding box of each human, and then calculate their corresponding color and
density from each avatar model respectively. For each human, we sample 256
points along the ray. Following [7], a sampled point has zero density when it
falls into an empty cell in the occupancy grid. All sampled points are sorted and
rendered together to get the final color of the ray.

Alternating Optimization In the stage of avatar optimization, we first optimize
the appearance of avatars using the whole sequence for 10 epochs. To alleviate
the negative effect of inaccurate poses on the avatar appearance, we select frames
where estimated poses tend to be correct and leverage them to refine the avatar
for another 20 epochs. We empirically observe that when the people are in close
interaction, the estimated poses are prone to have larger errors. Motivated by
this observation, we calculate the average distance of people from the estimated
initial pose and then select frames where the personal distance is relatively large
to refine avatars. In the stage of pose optimization, we fix the parameters of the
avatar network and only update the SMPL parameters Θ = {Θ(l)}l∈[1,L], where
L is the number of humans in the scene. We first train the whole SMPL model for
10 epochs, and then train poses for arms and hands using the semantic-guided
sampler for another 10 epochs.

We alternatively train the avatar stage and pose stage for 3 rounds, and then
perform a final stage of avatar training to get our final result.
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Ray Sampling Strategy During pose optimization, uniform sampling of rays is
inefficient, since most of the loss changes occur close to the edge of the human
mask. Inspired by this insight, we leverage SAM-Track [2] to get the mask for
all humans and sample more pixels close to the edge of the mask during op-
timization. Additionally, it is challenging to optimize the body parts such as
arms or hands when they are in close contact. To improve the pose, we leverage
body part segmentation in the SAM-Track mask and sample more points in this
region. We use an edge sampler to sample more pixels close to the edge of the
SAM-Track human mask, the sample range is set to be K = 48 pixels in and
out of the edge of the mask so that enough positive and negative points would
be included.

SMPL initialization Since InstantAvatar relies on SMPL pose parameters to
become animatable, we need to estimate a proper initialization for the SMPL
parameters. We first estimate 19 joints from the multi-view videos using 4DAs-
sociation [22]. Then we fit SMPL parameters to the joints using the SMPL
estimation code released by easymocap [14].

1.2 Training Details

We train our networks using the Adam optimizer [9], with different learning rates
for appearance (l = 1e−3), pose (l = 1e−4), rotation and translation (l = 1e−5).
Our model can be trained on a single NVIDIA RTX 3090 GPU.

We also use different weights for different loss terms. In the avatar optimiza-
tion stage, we apply weight 1.0 for RGB loss, 0.1 for silhouette loss, 0.1 for hard
surface regularization, 0.001 for instance layer regularization, and 0.1 for density
regularization. In the pose optimization stage, we use weight 10.0 for RGB loss,
0.05 for silhouette loss, 0.001 for pose regularization, and 0.001 for penetration
regularization.

2 Evaluation Details

2.1 Data

We evaluate our method on Hi4D [21], CHI3D [6], MultiHuman Real-Cap [23],
Shelf [1], and Panoptic [8] datasets.

Hi4D The released dataset has 8 calibrated cameras with corresponding cap-
tured videos of 2 people in close interaction, for example, hugging, dancing, and
doing sports. It includes registrations of SMPL body parameters which can be
considered as ground truth and from which we can infer the ground truth 3D
joint locations. It also contains ground truth instance masks, but here we only
use the estimated combined human mask from SAM-Track [2]. We use all the
sequences in Hi4D for evaluation.
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CHI3D This dataset has 4 calibrated cameras with corresponding videos captur-
ing close interactions between 2 people. It captures interactions like grabbing,
handshaking, and hitting. It has SMPLX ground-truth registration with one
person in the scene and the pseudo-ground-truth SMPLX for the other person.
We sample 72 sequences uniformly distributed in each group of interactions in
CHI3D.

MultiHuman Real-Cap This dataset contains a sequence with 3 people inter-
acting with each other, with some body contacts. It has 6 calibrated cameras
capturing videos. It has no ground-truth SMPL registration.

Shelf Shelf is a popular dataset used for evaluating multi-view multi-person
pose estimation. However, it seldom involves close contact among the 4 people
captured in the scene. The videos are captured with 5 calibrated cameras and
for some frames are annotated with ground-truth 3D skeleton positions.

Panoptic The Panoptic dataset contains different sequences with different num-
bers of people. It does not involve close human-body contact. There are 5 cali-
brated cameras and ground-truth 3D skeleton annotations.

2.2 Baseline

For pure association-based methods, we choose 4DAssociation [22] and MVPose*
[5]. Based on MVPose* [5], MVPose [4] added temporal tracking and SMPL prior
to the pipeline, which is regarded as SMPL-guided category. Since MVpose [4,5]
mainly uses 25 joints, we use a subset mapping to select the 19 joints used in
our method. For the regression-based methods Faster VoxelPose [20], MvP [17],
Graph [18] and Tempo [3], we fine-tune the provided backbone with a small
subset of sequences in Hi4D and CHI3D and test on the rest of the sequences.
Since they utilize a system of 15 joints introduced by the Panoptic Dataset [8],
we first fit a SMPL model to the estimated 15 joints, then extract the 19 joints in
our method from the fitted SMPL model, so that all the methods are evaluated
with the same 19 joints.

2.3 Evaluation Metric

The Mean Per Joint Position Error (MPJPE) is used to calculate the average
distance between the ground truth and estimated joints. Based on MPJPE, Per-
centage of Correct Parts (PCP3D) finds the closest pose estimation for each
ground truth pose and computes the percentage of correct parts. Since PCP3D
does not penalize false positive pose estimation, we add the Average Precision
(APK) metric from [16]. When MPJPE is smaller than K millimeters, we con-
sider the corresponding pose as accurate.
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Method Actor1 Actor2 Actor3 Avg

Graph [18] 99.3 96.5 97.3 97.7
MvP [17] 99.3 95.1 97.8 97.4
Faster VoxelPose [20] 99.4 96.0 97.5 97.6
MVPose [4] 98.8 94.1 97.8 96.9
4DAssociation [22] 99.0 96.2 97.6 97.6

Ours 98.4 96.9 97.8 97.7
Table 1: Quantitative Comparison with SotA on the Shelf [21] Dataset. We
compare our method with Graph [19], MvP [17], Faster VoxelPose [20], MVPose* [5],
MVPose [4] and 4DAssociation [22]. We use the metric percentage of correct parts
(PCP3D) used by all the previous methods.

3 Additional Results

3.1 Comparison to Baselines

In Figure 3 and Figure 4, we show additional qualitative comparison with other
baselines. While other methods encounter the problems of abnormal 3D joint
detection, interpenetration, and missing and redundant detections, our method
achieves more robust and accurate performance in all of the challenging se-
quences on Hi4D.

In Table 1, we compare our method with the SotA methods on the Shelf
dataset. We show that our method outperforms most previous methods and
achieves the highest average PCP3D metric. We also compare our method quan-
titatively and qualitatively with Tempo [3] in Table 2, Figure 3 and Figure 4.
Tempo is a learning-based method that tends to overfit the pose distribution
in the training subset. This can cause misaligned joint estimations or confusion
among keypoints. Tempo also has the problem of missing people when people
are in close interaction.

Dataset Method MPJPE(mm) ↓ PCP(%) ↑ AP50 ↑ AP100 ↑ Recall(%) ↑

Hi4D Tempo [3] 52.70 83.24 57.68 80.55 89.83
Hi4D Ours 32.98 99.79 93.20 99.79 99.85

CHI3D Tempo [3] 52.39 87.61 62.29 87.84 96.08
CHI3D Ours 32.10 96.90 91.48 97.33 98.78

Table 2: Quantitative Comparison with SotA on Hi4D [21] and CHI3D [6].
We compare our method with Tempo [3]. We report MPJPE, PCP, APK , and Recall
metric for all methods.
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3.2 Additional Qualitative Results

Figure 5 and Figure 6 show additional qualitative results of our method on dif-
ferent motion sequences in Hi4D with close body interaction. Figure 7 shows ad-
ditional qualitative results of our method on different sequences in CHI3D. Fig-
ure 8 shows additional qualitative results of our method on Shelf. Figure 9 shows
additional qualitative results on MultiHuman Real-Cap and Panoptic datasets.

3.3 Robustness to Number of Views

In Table 3, we report the comparison between our method and one SotA method
4DAssociation [22] under different numbers of views. Our method achieves robust
performance when the number of cameras becomes very small (4 views). Notably,
our method with 4 views even outperforms the SotA method with 8 views.

Method MPJPE(mm) ↓

4DAssociation (4views) 49.45
4DAssociation (8views) 40.44

Ours (4 views) 34.26
Ours (8 views) 29.37

Table 3: Robustness to Number of Views. Ablations to evaluate the performance
of our method on Hi4D with 4 views and 8 views. For comparison, we also report results
of 4DAssociation [22].

3.4 Ablation Study on Penetration Loss

Table 4 shows a quantitative ablation study to prove the effectiveness of the pen-
etration loss. Training with the penetration loss decreases the average MPJPE
loss by 0.2mm. Despite the minor numerical improvement, this loss greatly helps
avoid collisions.

Method MPJPE(mm) ↓ PCP(%) ↑ AP50 ↑ AP100 ↑

Ours (w/o penetration loss) 29.91 96.98 87.72 97.13

Ours 29.71 97.05 87.87 97.13
Table 4: Ablation Study on Penetration Loss
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3.5 Alternating Optimization Combining Joint Optimization

We also try to combine alternating optimization with joint optimization, with
one alternating optimization stage followed by a joint optimization stage. As
is shown in Table 5, with alternating optimization combined with joint opti-
mization, the average joint position error becomes smaller and the percentage
of correct parts is higher. However, according to the precision metrics, the AP50

and AP100 get lower, which means there are more outliers after the joint opti-
mization. When the alternating optimization does not fully correct the wrong
poses, joint optimization can have a negative effect on pose optimization.

Method MPJPE(mm) ↓ PCP(%) ↑ AP50 ↑ AP100 ↑ Recall(%) ↑

Ours (Alternating Only) 31.77 91.62 92.42 98.57 98.57

Ours (Alternating then Joint) 31.06 92.40 92.25 96.43 98.57
Table 5: Ablation Study: Alternating Optimization, Alternating then joint opti-
mization

3.6 Significance of Layered Rendering

Although SAM-Track [2] has reached state-of-the-art performance to segment
and track instances in videos, it still fails to segment different human instances
in close interaction. From Fig. 2, we can see that SAM-Track suffers from oc-
clusions and close interactions and cannot segment small body parts such as
hands and arms correctly. The problem of instance segmentation makes it hard
to reconstruct avatars separately using single-person avatar models, e.g. Instan-
tAvatar [7]. However, the combined mask for all humans in close interactions
is observed to be accurate. Thus, we choose layered rendering to train multiple
avatars together.

Fig. 2: SAM-Track Human Mask. SAM-Track tends to fail in human individual
segmentation when people are in close interaction. This leads to artifacts when we
train single avatars separately using individual instance masks. Our method leverages
layered rendering, which uses the combined mask of all humans in the scene, which is
always much more accurate than the individual masks.
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3.7 Training and Rendering Speed for Avatars

Our multi-avatar prior training and rendering process achieves relatively fast
speed due to the fast nature of Instant NGP [11]. The fast training and render-
ing speed for avatars enables the alternating optimization between avatars and
poses. According to Table 6, our method is 20× faster in training and 8× faster
in rendering than the state-of-the-art multi-human reconstruction method [14].
Both methods are experimented on a single NVIDIA RTX 3090 GPU.

Method Training (h) ↓ Rendering (s) ↓

Shuai et al. [14] 9.7 3.93
Ours 0.5 0.47

Table 6: Avatar Training Speed. Compared with [14], our model achieves faster
training and rendering speed for avatars, enabling alternating optimization between
avatars and poses. (Rendering time here means average rendering time for all avatars
in one frame.)

4 Limitations and Future Work

Although our method significantly outperforms previous methods, it still has
several limitations to improve in the future. We do not model hands in our
avatar model, which leads to inaccurate registration of 3D hand poses. It will
be a promising direction in the future to integrate hand models [12,13] into our
personalized avatar. The optimization pipeline of our current method is not very
fast and it can also be accelerated by combining more efficient representation [24]
or leveraging more powerful optimization tool [15]. Currently, we only estimate
the 3D shape and pose of closely interacting people. Extending our idea into
human-object interaction can be a promising direction to explore in the future.
We also believe it will be interesting future work to adapt our pipeline to estimate
3D poses of closely interacting people from in-the-wild and monocular videos and
images.
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Fig. 3: Additional Qualitative Comparison Results. We present six examples
from Hi4D dataset, comparing our method with Tempo [3], Graph [18], MvP [17],
Faster VoxelPose [20], MVPose [4], and 4DAssociation [22], all using 8 views. In our
illustrations, we use red circles to point out issues in other methods and to showcase
the corresponding results from our approach.
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Fig. 4: Additional Qualitative Comparison Results. We present six examples
from CHI3D dataset, comparing our method with Tempo [3], Graph [18], MvP [17],
Faster VoxelPose [20], MVPose [4], and 4DAssociation [22], all using 4 views. In our
illustrations, we use red circles to point out issues in other methods and to showcase
the corresponding results from our approach.
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Fig. 5: Additional Qualitative Results. We show additional qualitative results
of our method on the Hi4D dataset [21]. The left and middle columns show the 2D
projections of the estimated 3D skeletons and SMPL body meshes on two views. The
right column demonstrates skeletons and SMPL bodies in 3D scenes.



12 F. Lu et al.

Fig. 6: Additional Qualitative Results. We show additional qualitative results
of our method on the Hi4D dataset [21]. The left and middle columns show the 2D
projections of the estimated 3D skeletons and SMPL body meshes on two views. The
right column demonstrates skeletons and SMPL bodies in 3D scenes.
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Fig. 7: Additional Qualitative Results. We show additional qualitative results of
our method on the CHI3D dataset [6]. The left and middle columns show the 2D
projections of the estimated 3D skeletons and SMPL body meshes on two views. The
right column demonstrates skeletons and SMPL bodies in 3D scenes.
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Fig. 8: Additional Qualitative Results. We show additional qualitative results
of our method on the Shelf dataset [1]. The left and middle columns show the 2D
projections of the estimated 3D skeletons and SMPL body meshes on two views. The
right column demonstrates skeletons and SMPL bodies in 3D scenes.
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MultiHuman Real-Cap
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Fig. 9: Additional Qualitative Results. We show additional qualitative results of
our method on the MultiHuman Real-Cap dataset [23] and Panoptic dataset [8]. The
left and middle columns show the 2D projections of the estimated 3D skeletons and
SMPL body meshes on two views. The right column demonstrates skeletons and SMPL
bodies in 3D scenes.



16 F. Lu et al.

4. Dong, J., Fang, Q., Jiang, W., Yang, Y., Bao, H., Zhou, X.: Fast and robust multi-
person 3d pose estimation and tracking from multiple views. In: T-PAMI (2021)

5. Dong, J., Jiang, W., Huang, Q., Bao, H., Zhou, X.: Fast and robust multi-person 3d
pose estimation from multiple views. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. pp. 7792–7801 (2019)

6. Fieraru, M., Zanfir, M., Oneata, E., Popa, A.I., Olaru, V., Sminchisescu, C.:
Three-dimensional reconstruction of human interactions. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7214–
7223 (2020)

7. Jiang, T., Chen, X., Song, J., Hilliges, O.: Instantavatar: Learning avatars from
monocular video in 60 seconds. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 16922–16932 (2023)

8. Joo, H., Liu, H., Tan, L., Gui, L., Nabbe, B., Matthews, I., Kanade, T., Nobuhara,
S., Sheikh, Y.: Panoptic studio: A massively multiview system for social motion
capture. In: Proceedings of the IEEE International Conference on Computer Vi-
sion. pp. 3334–3342 (2015)

9. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

10. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM 65(1), 99–106 (2021)

11. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with
a multiresolution hash encoding. ACM Transactions on Graphics (ToG) 41(4), 1–
15 (2022)

12. Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A.A., Tzionas, D.,
Black, M.J.: Expressive body capture: 3d hands, face, and body from a single im-
age. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. pp. 10975–10985 (2019)

13. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: Modeling and capturing
hands and bodies together. arXiv preprint arXiv:2201.02610 (2022)

14. Shuai, Q., Geng, C., Fang, Q., Peng, S., Shen, W., Zhou, X., Bao, H.: Novel
view synthesis of human interactions from sparse multi-view videos. In: ACM SIG-
GRAPH 2022 Conference Proceedings. SIGGRAPH ’22, Association for Comput-
ing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3528233.
3530704, https://doi.org/10.1145/3528233.3530704

15. Song, J., Chen, X., Hilliges, O.: Human body model fitting by learned gradient de-
scent. In: European Conference on Computer Vision. pp. 744–760. Springer (2020)

16. Tu, H., Wang, C., Zeng, W.: Voxelpose: Towards multi-camera 3d human pose
estimation in wild environment. In: Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16. pp. 197–
212. Springer (2020)

17. Wang, T., Zhang, J., Cai, Y., Yan, S., Feng, J.: Direct multi-view multi-person
3d pose estimation. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.,
Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems. vol. 34,
pp. 13153–13164. Curran Associates, Inc. (2021), https://proceedings.neurips.cc/
paper_files/paper/2021/file/6da9003b743b65f4c0ccd295cc484e57-Paper.pdf

18. Wu, S., Jin, S., Liu, W., Bai, L., Qian, C., Liu, D., Ouyang, W.: Graph-based
3d multi-person pose estimation using multi-view images. In: Proceedings of the
IEEE/CVF international conference on computer vision. pp. 11148–11157 (2021)

19. Wu, S., Jin, S., Liu, W., Bai, L., Qian, C., Liu, D., Ouyang, W.: Graph-based 3d
multi-person pose estimation using multi-view images. In: ICCV (2021)

https://doi.org/10.1145/3528233.3530704
https://doi.org/10.1145/3528233.3530704
https://doi.org/10.1145/3528233.3530704
https://doi.org/10.1145/3528233.3530704
https://doi.org/10.1145/3528233.3530704
https://proceedings.neurips.cc/paper_files/paper/2021/file/6da9003b743b65f4c0ccd295cc484e57-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/6da9003b743b65f4c0ccd295cc484e57-Paper.pdf


AvatarPose 17

20. Ye, H., Zhu, W., Wang, C., Wu, R., Wang, Y.: Faster voxelpose: Real-time 3d
human pose estimation by orthographic projection. In: European Conference on
Computer Vision. pp. 142–159. Springer (2022)

21. Yin, Y., Guo, C., Kaufmann, M., Zarate, J.J., Song, J., Hilliges, O.: Hi4d: 4d in-
stance segmentation of close human interaction. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 17016–17027 (2023)

22. Zhang, Y., An, L., Yu, T., Li, X., Li, K., Liu, Y.: 4d association graph for realtime
multi-person motion capture using multiple video cameras. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 1324–1333
(2020)

23. Zheng, Y., Shao, R., Zhang, Y., Yu, T., Zheng, Z., Dai, Q., Liu, Y.: Deepmulticap:
Performance capture of multiple characters using sparse multiview cameras. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
6239–6249 (2021)

24. Zheng, Z., Zhao, X., Zhang, H., Liu, B., Liu, Y.: Avatarrex: Real-time expressive
full-body avatars. arXiv preprint arXiv:2305.04789 (2023)


	Supplementary Material for AvatarPose: Avatar-guided 3D Pose Estimation  of Close Human Interaction  from Sparse Multi-view Videos

