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Fig. 1: We propose AvatarPose, a method for estimating the 3D poses and shapes
of multiple closely interacting people from multi-view videos. To this end, we first
reconstruct the avatar of each individual and leverage the learned personalized avatars
as priors to refine poses via color and silhouette rendering loss. We alternate between
avatar refinement and pose optimization to obtain the final pose estimation.

Abstract. Despite progress in human motion capture, existing multi-
view methods often face challenges in estimating the 3D pose and shape
of multiple closely interacting people. This difficulty arises from reliance
on accurate 2D joint estimations, which are hard to obtain due to occlu-
sions and body contact when people are in close interaction. To address
this, we propose a novel method leveraging the personalized implicit
neural avatar of each individual as a prior, which significantly improves
the robustness and precision of this challenging pose estimation task.
Concretely, the avatars are efficiently reconstructed via layered volume
rendering from sparse multi-view videos. The reconstructed avatar prior
allows for the direct optimization of 3D poses based on color and sil-
houette rendering loss, bypassing the issues associated with noisy 2D
detections. To handle interpenetration, we propose a collision loss on
the overlapping shape regions of avatars to add penetration constraints.
Moreover, both 3D poses and avatars are optimized in an alternating
manner. Our experimental results demonstrate state-of-the-art perfor-
mance on several public datasets.
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1 Introduction

People frequently engage in interactions with each other in daily life to offer
physical support or convey emotions. For AI systems to interpret 3D human
interactions, a foundational step is to reconstruct 3D human poses and shapes
using consumer-grade sensors, such as cameras. However, in closely interacting
scenarios, such as hugging or kissing, 3D pose estimations face challenges due to
strong occlusions. The problem of depth ambiguity worsens when close contact is
involved, making it more difficult to predict 3D poses from 2D images or videos.
Consequently, a multi-camera setup becomes essential to provide additional ob-
servations and to address depth ambiguity in pose estimation.

Despite the ubiquity of close human interactions, the study of estimating such
human motions is scarce. Most previous multi-human methods with a multi-view
setup [2–4,19,22,30,58,66,72] focus on scenarios where people are at a distance
from each other. Some methods [2, 4, 19, 22, 72] typically formulate the prob-
lem as a cross-view matching problem, relying heavily on 2D joint estimations
for subsequent 3D triangulation. These methods demonstrate high sensitivity to
noisy or missing 2D joint estimations, particularly when occlusion occurs. An-
other group of learning-based methods [58, 61, 63, 66] attempts to integrate 2D
features from each view into a 3D voxel space and predict 3D human poses from
identified 3D subvolumes of each individual. These methods are more robust to
occlusion, but they encounter challenges with generalization and are sensitive to
distribution shifts due to the lack of annotated 3D data. To correct abnormal
or missing pose estimations, some methods [18, 21] leverage parametric body
models like SMPL [37] as full-body priors and fit these 3D models to 2D joint
estimations. Although this approach alleviates the issue of abnormal or missing
joint estimations, it remains constrained by noisy 2D detections.

Embracing the challenging problem of pose estimation for close interactions,
we propose a novel method to estimate the 3D poses and shapes of multiple
people observed from a sparse set of cameras. Our goal is to ensure that even
in close contact, the estimated human poses and shapes are accurate and free
from interpenetrations. The key to our method is reconstructing implicit tex-
tured avatars of each individual in the scene and leveraging them as a strong
personalized prior for pose optimization (Figure 1). In contrast to relying solely
on noisy 2D joint detections, this textured avatar prior enables us to leverage
pixel-wise color and silhouette information for pose refinement, significantly in-
creasing the robustness and accuracy of our method (Table 3). Meanwhile, the
reconstructed avatar provides crucial geometric and appearance information to
avoid collisions between individuals. Compared to methods using SMPL body
shape [25, 42] to penalize collisions, our implicit avatar model contains a more
detailed clothed shape and additional appearance cues and enables efficient com-
putation of penetration loss. Due to the mutually beneficial relationship between
avatar and pose, we alternate between pose optimization and avatar refinement.

More specifically, to accelerate the learning of avatars, we model each human
individual in canonical space using an efficient neural radiance field variant in
Instant NGP [43] and combine it with an efficient SMPL-based deformation
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module [37]. To learn and render avatar models of multiple people, we adapt
layered volume rendering [53, 70] to our avatar model. This adaptation allows
us to jointly optimize all avatar models through a straightforward rendering
loss. Once learned, the avatar can be animated and rendered based on pose
parameters at interactive rates, thus naturally serving as an efficient personalized
textured prior for pose optimization. With the learned personalized prior, we
optimize pose via a novel objective function. Different from previous methods
based on 2D reprojection error of joints, we directly optimize pose parameters via
minimizing color and silhouette rendering losses while keeping the learned avatar
model fixed. To prevent interpenetration between human individuals, a collision
loss is introduced by penalizing the situation when a 3D point is occupied by
multiple avatars. To remove artifacts in the initial avatar due to imperfect pose
initialization, we further refine avatars based on optimized poses. Throughout
the optimization process, both initial personalized avatar models and SMPL
parameters are optimized in an alternating manner, motivated by the insight
that accurate 3D pose estimations improve avatar learning, and improved avatar
models, in turn, increase the precision of overall pose estimations.

We experimentally demonstrate that our method significantly outperforms
previous state-of-the-art methods on several public datasets both quantitatively
(Table 1 and Table 2) and qualitatively (Figure 3) especially when people are in
close interaction. In summary, our contributions are:

– We propose a pipeline that efficiently creates implicit neural avatars of closely
interacting people and leverages the learned avatars as priors to optimize
poses.

– The avatar prior enables us to design a novel objective function that leverages
color and mask rendering loss for pose optimization. We show the superiority
of this loss function compared to the 2D reprojection error of 3D joints used
by most of the previous methods.

– Based on the learned avatar, a collision loss is introduced to avoid penetra-
tion when individuals are in contact.

2 Related Work

2.1 Multi-Person 3D Pose Estimation

Despite significant progress in multi-human 2D pose estimation [9,13,15,24,34,
49] and 3D pose estimation from monocular images or video [7, 31–33, 38–40,
45,47,55,56,59,68,69], the reconstruction accuracy is still limited due to depth
ambiguity and strong occlusions when humans are in close contact. A multi-view
setting [4, 5, 19, 22, 23, 35, 36, 54, 61, 63, 66, 72] helps to alleviate these challenges.
One straightforward idea of most methods [2,4,19,22,72,76] is to formulate the
problem into cross-view matching and association problems. MVPose [19] per-
forms 2D person parsing in each image and leverages cross-view person matching
to infer 3D pose. 4DAssociation [72] additionally adds tracking into this process
to form a unified graph for associating 4D information. However, these methods
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are sensitive to the noisy estimation of 2D pose. In contrast to these matching-
based methods, some recent methods [5, 14, 17, 23, 35, 50, 58, 61, 63, 66, 71, 75] di-
rectly learn deep neural networks to regress poses. Faster Voxelpose [66] employs
the feature volume proposed by Voxelpose [58] and enhances computational effi-
ciency. Graph [63] designs three graph neural network models for human center
detection and pose estimation. MvP [61] simplifies the multi-person pose esti-
mation by direct regression using the transformer model. A concurrent method
CloseMocap [54] proposes to learn a model from a synthetic dataset simulating
occlusion situations. However, heavily relying on the 2D or 3D features as input
during training, these learning-based methods suffer from generalization issues
when subjects, motions, and camera configurations change.

To further improve the robustness, a statistical parametric body model such
as SMPL [37] is explored in [21] as a regularization prior for 3D joint refinement.
Some follow-ups [18,73] show that parametric models help in correcting implau-
sible 3D pose estimates and filling in missing joints. However, this coarse body
prior highly relies on aligning the 3D joints to 2D pose estimations, which are
inaccurate when occlusion happens. Different from all of these previous methods,
we explore the usage of personalized textured avatar models as priors to refine
human poses. This prior enables us to leverage color and silhouette information
from multi-view observation for refining poses of closely interacting humans.

2.2 3D Human Modeling

Parametric human body models [1,28,37,44,65] can represent minimally clothed
human shapes by deforming a template mesh. It is challenging to extend this
explicit representation for modeling clothed humans due to the fixed topology
and resolution. To overcome this limitation, methods such as SNARF [12] and
SCANimate [52] propose to model articulated human shapes based on 3D im-
plicit representations. Many works [6, 8, 10, 20, 26, 29, 48, 57, 60, 62] fit implicit
neural fields to RGB or RGB-D videos by neural rendering to reconstruct the
shape and appearance of a single human body. However, when applied to a multi-
human scene, these methods are not able to achieve good fidelity due to strong
occlusions. Recent methods including ST-NeRF [70] and [53] leverage layered
neural representation to model multiple humans with sparse multi-view videos
and thus can generate novel view synthesis of dynamic multiple humans. The
main problem of all aforementioned approaches, however, is their high reliance
on 3D human pose estimation [70, 74]: the deformation of the human model re-
quires accurate human poses, which is hard to obtain when people are in close
interaction. To address this challenge, our method is orthogonal to others, aiming
at leveraging the learned avatar as priors for pose estimation in close interaction.

2.3 3D Human Datasets for Close Interaction

Most of the existing datasets [3, 11, 30] like Shelf and Panoptic studying multi-
person pose estimation focus on the scene where people are at a distance from
each other and rarely involved in close interactions. To study close interactions
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among people, MultiHuman [74] dataset captures multi-person interaction with
some close interactions and occlusions. ExPI [27] creates a multi-person extreme
motion dataset with close interactions, but it focuses mainly on motion predic-
tion for future frames instead of pose estimation from sparse views. CHI3D [25]
captures two-person interaction datasets and proposes to learn a contact esti-
mation module from annotations to improve the precision of pose estimation.
The most recent work Hi4D [67] creates a challenging dataset of physically close
human interaction and proposes a method to disentangle human bodies and es-
timate poses. However, this method relies on the 3D ground truth of clothed
human meshes captured with expensive 3D body scanners. Due to the reliance
on the limited annotated 3D data, this method faces challenges in generalization
with different people and camera configurations. In contrast to all the works be-
fore, we intend to solve the problem of pose estimation in close human interaction
without requiring accurate 3D scans or other training data.

3 Method

Given a dynamic scene captured by a sparse set of RGB cameras, our goal
is to estimate the 3D pose and shape of multiple people even if they interact
closely. To address this challenging task, our key idea is to first reconstruct the
personalized avatar of each individual in the scene and leverage them as a strong
prior to refine the appearance and pose in an alternating manner. An overview
of our method is shown in Figure 2.

We first introduce an efficient pipeline to create avatars of multiple people
in a scene (Section 3.1 and Figure 2(a)). Specifically, we leverage an accelerated
neural radiance field to represent the shape and appearance of each individual
in canonical space and deform it at an interactive rate. We then adapt layered
volume rendering to our pipeline, which composites the rendering of avatars into
one image, thus enabling direct learning from multi-view video inputs.

Thanks to the learned avatar prior for each individual, we can enhance 3D
pose optimization via a combination of RGB and silhouette rendering loss (Sec-
tion 3.2 and Figure 2(b)). While previous work heavily relies on noisy 2D joint
detection, we show that employing such pixel-wise color and silhouette infor-
mation can largely increase precision and robustness. Moreover, a collision loss
is introduced to avoid interpenetration. Finally, we alternate between avatar
learning and pose optimization to get complete and accurate 3D human poses.

3.1 Multi-Avatar Prior Learning

Avatar Model We represent each human individual in canonical space using an
accelerated neural radiance field [43] and model shape-aware articulated defor-
mation based on SMPL [37].

– Canonical Appearance Representation: To model human shape and
appearance, we create canonical radiance field F̄

(l)
σf for each human instance
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Fig. 2: Method Overview: Our method consists of two modules: (a) Multi-Avatar
Prior Learning: Given the input multi-view images and estimated poses Θ(l), we sample
points x(l) for each individual l along the rays in posed space and warp these points
into canonical space and calculate their color c(l) and density σ(l) via the canonical
appearance network F̄

(l)
σf . We leverage layered volume rendering [70] to attain the final

pixel color and compare it with the original input image to optimize the parameters
of avatars. (b) Avatar-guided Pose Optimization: Given learned avatar model F̄(l)

σf and
initial poses Θ(l) of each individual l, we deform all of the avatars based on SMPL-
based deformer and render them jointly via layered volume rendering. We compare
the composite rendering with input observation and minimize the RGB and mask
rendering loss to optimize poses. A collision loss is additionally introduced to avoid
interpenetration. Finally, we alternate between two modules to obtain the final result.
For clarity, the parameters to be optimized are marked as red in each module.

l ∈ [1, L], where L is the number of humans in the scene. F̄(l)
σf takes a 3D

point x̄(l) as input and predicts its density σ(l) and color c(l). Following
Instant-NGP [43] and InstantAvatar [29] to accelerate the rendering, F̄(l)

σf is
parameterized via using a hash table to store feature grids at different scales.

– Pose Representation: We represent the 3D pose and underlying body
shape for all human instances by SMPL parameters Θ = {Θ(l)}l∈[1,L]. For
each human l, Θ(l) = {β(l), θ(l), t(l)} contains shape parameters β(l) ∈ R10,
pose parameters θ(l) ∈ R72 and translation t(l) ∈ R3 of SMPL.

– Deformer: To enable animation given targeted poses Θ(l), we require the
radiance field in the posed space. Given a point x(l) in deformed space of hu-
man l, we determine the corresponding canonical point x̄(l) by inverse linear
blend skinning(LBS) [37]: x̄(l)(x(l),Θ(l)) = (

∑nb

i=1 wi(Θ
(l))Bi(Θ

(l)))−1x(l),
where Bi is the rigid bone transformation matrix for joint i ∈ {1, ..., nb}
under pose Θ(l). wi is the skinning weights of the nearest neighbor of x(l) in
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the deformed SMPL vertices. We obtain the radiance field at the point x(l)

by evaluating the canonical appearance field at the corresponding point x̄(l).

Layered Volume Rendering To obtain the pixel value for a ray r ∈ R, we raycast
every human instance separately with a layered rendering strategy similar to
ST-NeRF [70]. Specifically, we first calculate the intersection points between the
ray and the 3D bounding box of each human instance and uniformly sample
points in each bounding box. To distinguish different identities, we assign each
sampled point xi a one-hot representation mi = [m

(1)
i , · · · ,m(L)

i ] to indicate
which human identity it belongs to. After sorting all sampled points by their
depth values and calculating their corresponding color ci and density σi from
the avatar model, if m(l)

i = 1, we compute

ci, σi = F̄(l)
σf
(x̄i(xi,Θ

(l))). (1)

The color of each ray is computed via numerical integration [41].

Ĉ(r) =

N∑
i=1

αi

∏
j<i

(1− αj)ci αi = 1− exp(−σiδi), (2)

where δi is the distance between samples. The accumulated alpha value,
which represents ray opacity, can be computed via:

α(r) =

N∑
i=1

αi

∏
j<i

(1− αj). (3)

For each human identity l ∈ [1, L], the corresponding instance ray opacity
can be calculated via:

α(l)(r) =

N∑
i=1

αi

∏
j<i

(1− αj)m
(l)
i . (4)

Training The overall training process is shown in Figure 2(a). For training avatar
layers, we minimize the Huber loss ρ between the predicted pixel color Ĉ(r) and
the ground truth pixel color Cgt(r):

LRGB =
1

| R |
∑
r∈R

ρ(∥Ĉ(r)−Cgt(r)∥). (5)

Since instance segmentation of human performers is hard to obtain and is not
accurate, we choose foreground segmentation as our mask supervision, which is
obtained via SAM-Track [16]. We apply a loss for optimizing the rendered alpha
values α to reduce the artifacts in the floating area:

Lalpha =
1

| R |
∑
r∈R

(α(r)− αSAM (r))2. (6)



8 F. Lu et al.

Following [53], we add a regularization loss for instance alpha values to make
sure every pixel can only be rendered from one human layer:

Llayer = − 1

L | R |
∑
r∈R

L∑
l=1

α(l)(r) log(α(l)(r)). (7)

Similar to [29], we also add hard surface and density regularization terms in
the learning process. More training details can be found in the Supp Mat.

3.2 Avatar-guided Pose Optimization

Equipped with learned avatars obtained in Section 3.1, we aim to estimate the
3D shape and pose of multiple humans with close physical contact. To achieve
this, we leverage the avatars as priors to handle the challenging pose ambiguities
caused by contact. Specifically, we first initialize pose parameters using an off-
the-shelf 3D pose estimator [72] and refine the pose via a rendering loss between
rendered posed avatars and 2D observations (Figure 2(b)). Since the initial im-
perfect pose estimations may cause artifacts in avatar reconstruction, we further
refine the weights of the avatar model using the optimized pose. This process is
formulated as an alternating optimization to refine both poses and avatars.

Initialization The initial 3D pose proposals are estimated by leveraging the off-
the-shelf 3D human pose estimator [72]. After that, we register a SMPL model
to the estimated 3D joints to obtain the initial pose parameters Θ0. Given these
estimated poses, the initial avatar model of each individual is further learned
from multi-view videos.

Objective To leverage avatars as priors to tackle challenges caused by contact,
we optimize the following objective:

L(Θ) = λRGBLRGB(Θ) + λαLα(Θ)

+ λregLreg(Θ) + λpaLpa(Θ).
(8)

Here, Θ is the SMPL parameters to be optimized for all avatars, which is also
consistent with the pose parameters to deform the avatar model (Section 3.1).
Following [62], we represent Θ as Θ0 + MLP(Θ0) and refine poses by changing
the parameters of the neural network. This representation empirically shows
more robust results compared to directly optimizing SMPL parameters.

Different from previous methods [18,21,58,72], the personalized multi-avatar
prior allows us to leverage appearance and silhouette information to refine initial
poses. Specifically, we calculate LRGB to ensure the color consistency between
the rendered pixel Ĉ(r,Θ) (Equation (1) and Equation (2)) of deformed avatar
with poses Θ and the corresponding ground-truth pixel color Cgt(r).

LRGB(Θ) =
1

| R |
∑
r∈R

ρ(∥Ĉ(r,Θ)−Cgt(r)∥). (9)
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Additionally, a cross-entropy loss Lα is introduced to ensure that the rendered
mask α(r,Θ) (Equation (3)) of the reposed avatar is aligned with the estimated
SAM-Track mask αSAM (r) by:

Lα(Θ) = −
∑
r∈R

αSAM (r) log(α(r,Θ)) (10)

To penalize the unnatural poses and avoid elbows and knees bending in the
wrong direction, we add an L2 regularization term and combine it with the pose
prior in SMPLify [7] to constrain physically implausible joint rotation:

Lreg(Θ) = ∥Θ∥2 + λ
∑
i∈I

exp(Θi), (11)

where I is the set of pose indices corresponding to elbows and knees.
A key challenge to correctly estimate poses in close interaction is to handle

interpenetration. Since every avatar is modeled separately, the surfaces tend to
intersect when they are in contact. To handle this, we first select sampled points
inside multiple instances as S = {xi | α(p)

i > 0, α
(q)
i > 0, p, q ∈ [1, L], p ̸= q} (α(p)

i

is calculated from Equation (1) and Equation (2) corresponding with a point xi

with m
(p)
i = 1). We then propose a collision loss Lpa for penalizing penetration:

Lpa(Θ) =
1

| S |
∑
xi∈S

α
(p)
i (Θ)α

(q)
i (Θ) (12)

Intuitively, this loss guarantees every sample point in 3D space can not be
occupied by multiple avatar models simultaneously, which guarantees better pose
estimation in close contact.

Alternating Optimization Since artifacts sometimes appear on initial avatars due
to imperfect pose initialization, we further refine avatars based on optimized
poses via minimizing the loss function in Section 3.1. Finally, the optimization
of poses and avatars is formulated in an alternating fashion for N steps. More
details of optimization can be found in the Supp Mat.

4 Experiments

Datasets. We mainly evaluate our proposed method on Hi4D [67] and CHI3D [25],
which are challenging datasets of two humans in close interaction. To demon-
strate the generalization ability of our method for more than two people, we also
evaluate on Shelf [3] and MultiHuman [74] including three or four people. More
details are shown in the Supp Mat.

Metrics. We use the Mean Per Joint Position Error (MPJPE) [58] to measure
the distance between the ground truth 3D poses and the estimated poses. We
also choose the Percentage of Correct Parts (PCP3D) metric [19] to calculate
the percentage of correct parts. APK [58] and Recall [21] are also leveraged to
evaluate performance. More details are shown in the Supp Mat.
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Fig. 3: Qualitative Comparison with SotA methods [19,61,64,66,72] on Hi4D
and CHI3D. We show two examples from the Hi4D and CHI3D datasets compared
with Graph, MvP, Faster VoxelPose, MVPose, and 4DAssociation. For each example,
we show 2D projections on two sampled views.

Baselines. We compare our method on the Hi4D dataset with state-of-the-art
methods in three categories discussed in Section 2.1. For learning-based meth-
ods, we choose Graph [64], MvP [61], and Faster VoxelPose [66] and fine-tune
these models on a subset of the evaluating datasets. For pure association-based
methods, we choose 4DAssociation [72] and MVPose* [19]. MVPose [18] adds
temporal tracking and SMPL prior to MVPose* [19] and is regarded as a SMPL-
guided method. More details about baselines can be found in the Supp Mat.

4.1 Comparison to SotA

Table 1 and Table 2 summarizes our quantitative comparisons on Hi4D and
CHI3D with SotA (State-of-the-art) methods. Our method largely outperforms
the other SotA methods in all of the metrics including MPJPE, PCP3D, and
APK . More comparisons on Shelf and MultiHuman are shown in the Supp Mat.

Comparison with Graph [63], MvP [61], Faster VoxelPose [66]. Our method out-
performs Graph, MvP, and Faster VoxelPose on Hi4D and CHI3D. These meth-
ods are prone to overfitting to training pose distributions, thus struggling with
challenging poses of interacting actors. Specifically, Faster VoxelPose sometimes
misses actors in close contact, leading to a relatively low recall. While Graph and
MvP have better recall, Graph fails to consistently track actors across frames,
and MvP results in many misaligned joints between actors.
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Method MPJPE(mm) ↓ PCP(%) ↑ AP50 ↑ AP100 ↑ Recall(%) ↑

MvP [61] 92.77 74.14 41.59 63.86 93.84
Graph [63] 89.62 71.55 44.75 67.33 93.31
Faster VoxelPose [66] 68.40 73.67 44.05 68.70 83.55
MVPose* [19] 53.05 87.57 67.97 80.28 93.80
MVPose [18] 42.63 90.76 71.79 90.19 93.30
4DAssociation [72] 41.29 88.62 80.87 97.27 98.78

Ours 32.10 96.90 91.48 97.33 98.78
Table 1: Quantitative Comparison with SotA on the Hi4D [67] Dataset (8
views). We compare our method with MvP [61], Graph [63], Faster VoxelPose [66],
MVPose* [19], MVPose [18] and 4DAssociation [72]. We report MPJPE, PCP, APK ,
and Recall metric for all methods.

Method MPJPE(mm) ↓ PCP(%) ↑ AP50 ↑ AP100 ↑ Recall(%) ↑

MvP [61] 55.38 89.47 63.58 92.53 99.06
Graph [63] 45.33 92.46 74.02 95.25 99.17
Faster VoxelPose [66] 67.81 78.41 29.28 82.88 93.34
MVPose* [19] 50.42 90.39 69.13 75.72 88.72
MVPose [18] 34.05 93.35 79.94 86.91 88.18
4DAssociation [72] 37.47 99.30 89.66 98.67 99.85

Ours 32.98 99.79 93.20 99.79 99.85
Table 2: Quantitative Comparison with SotA on the CHI3D [25] Dataset
(4 views). We compare our method with Faster VoxelPose [66], MVPose* [19], MV-
Pose [18] and 4DAssociation [72]. We report MPJPE, PCP, APK , and Recall metric
for all methods.

Comparison with MVPose [18]. Our method achieves much better MPJPE and
precision than MVPose. MVPose relies heavily on noisy 2D joint detected in close
interactions. In contrast, our method leverages color and silhouette rendering loss
to optimize poses, leading to robustness to occlusions. Additionally, this top-
down method cannot detect actors correctly with strong occlusions, as shown in
Figure 3.

Comparison with 4DAssociation [72]. Finally, we compare our method with the
bottom-up association method. As shown in Table 1 and Table 2, our method
outperforms 4DAssociation in most metrics. Figure 3 shows that when actors
are close, this bottom-up method is inclined to associate joints with the wrong
human instances. This is because they solve the joint association with a greedy
algorithm, which is sensitive to missing and inaccurate 2D joint detections.
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Fig. 4: Qualitative Results of our method on Hi4D (a)(b), CHI3D (c)(d),
MultiHuman Real-Cap (e), and Shelf (f). The left and middle columns in each
sub-figure show the 2D projections of the estimated 3D skeletons and SMPL body
meshes on two views. The right column in each sub-figure demonstrates skeletons and
SMPL bodies in 3D scenes.

4.2 Additional Qualitative Samples

Figure 4 demonstrates more qualitative results of our method on Hi4D, CHI3D,
and MultiHuman Real-Cap with challenging and close interactions among 2 or
3 people. We also demonstrate results on the Shelf [3] dataset, which contains 4
people without close contact. More results can be found in the Supp Mat.

4.3 Ablation Study

To validate the effectiveness of our method, we conduct a detailed analysis of
different design choices of our algorithm. All the experiments are conducted on
the Hi4D Dataset.

Comparison with SMPL Body Prior. To validate the effectiveness of our person-
alized avatar prior, we compare with a baseline that optimizes SMPL parameters
to align 3D joint reprojections to 2D observations. Our method significantly out-
performs the SMPL prior baseline (Table 3) by leveraging color and silhouette
rendering loss to refine poses, reducing reliance on inaccurate joint detections
when occlusion happens. Figure 5 shows that while the baseline method in-
correctly estimates the arm pose and even leads to penetration, our method
reconstructs the poses accurately.

Color and Mask Loss. To demonstrate the effectiveness of the color and silhou-
ette rendering loss in our optimization process, we design baselines without RGB
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SMPL Prior Fitted Ours GT

Fig. 5: Comparison with SMPL Body Prior. Only fitting SMPL to 2D obser-
vations, some joints in close contact such as arms are incorrectly estimated and even
cause intersections between body surfaces. In contrast, our personalized prior enables
accurate estimation of poses.

Method MPJPE(mm) ↓ PCP(%) ↑ AP50 ↑ AP100 ↑

Ours (SMPL fitted) 40.41 95.10 84.04 94.37

Ours (w/o RGB loss) 78.40 83.26 17.84 74.55
Ours (w/o Mask loss) 31.00 97.33 90.28 99.06

Ours (Joint Optimization) 66.04 84.56 22.55 76.70

Ours 29.37 98.02 96.79 99.06
Table 3: Quantitative Ablation Results. Ablations to evaluate our method with
only the SMPL fitted method, our method without RGB loss and without Silhouette
loss, and our method without alternating optimization.

loss and mask loss respectively for comparison. Table 3 shows that the RGB loss
significantly improves pose optimization, and the optimization process will com-
pletely deviate from the correct trajectory in the absence of RGB loss. Mask loss
is proven to slightly increase the accuracy by adding additional constraints on
the rendered human silhouette.

Alternating Optimization. We choose a joint optimization method widely used
in avatar reconstructions [20, 26] to compare with our alternating optimization.
Table 3 shows that our method significantly outperforms the chosen baseline.
In Figure 6, the avatars from the baseline suffer from artifacts around contact
body parts, leading to wrong 3D pose estimations. In contrast, our method can
faithfully reconstruct avatars and poses with challenging initializations.

Penetration Loss. Our penetration loss serves an important role in avoiding
interpenetration. Comparing our method to the ablated version where we remove
this loss, Figure 7 shows that the SMPL body of one person partially intersects
with the other person in the contact area. This is also confirmed by the rendering
result of the avatar. By penalizing the collision of density fields of avatars in
3D space, our method largely reduces the penetration and thus achieves more
accurate pose estimation.
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Alternating OptJoint OptGT

Fig. 6: Ablation of Alternating Optimization. We show the results of rendered
avatars and projections of the estimated 3D poses. Joint optimization suffers from ar-
tifacts around the contact part and in turn causes wrong pose estimations. In contrast,
ours reconstructs both avatars and poses correctly.

Fig. 7: Ablation of Penetration Loss. Without penetration loss, both the avatar
and underlying SMPL body tend to have collisions on surfaces.

4.4 Limitations and Future Work

Despite greatly improving 98% of the sequences, our method shows minor im-
provements when the pose initialization is in the opposite direction or most joints
are severely misaligned, leading to local minima in optimization. Moreover, we
do not model hands in our avatar model, it will be a promising direction to inte-
grate hand models [46, 51] into the personalized avatar. More discussions about
limitations and future work can be found in the Supp Mat.

5 Conclusion

In this paper, we propose AvatarPose, a novel method to estimate the 3D poses of
multiple people in close interaction from sparse multi-view videos. Unlike previ-
ous methods leveraging SMPL body prior, we leverage the reconstructed avatars
as personalized priors to guide pose optimization. The avatar prior enables us
to use color and silhouette observations and to introduce a collision loss in close
contact. Our method outperforms SotA methods significantly on public datasets
of close human interactions.
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